Chlamydia pneumoniae adversely modulates vascular cell properties by direct interaction with signalling cascades.

نویسندگان

  • Jan Marco Kern
  • Viola Maass
  • Matthias Maass
چکیده

Due to its dependence on intracellular development Chlamydia pneumoniae has developed numerous strategies to create an adequate environment within its host cells ensuring both chlamydial reproduction and target cell survival. The bacterium that has been related to atherogenesis due to its presence in vascular tissue is able to enter a persistent state of chronic infection in the vasculature that escapes antibiotic targeting. Ingestion of the bacterium results in severe modifications and reprogramming of signalling pathways and the metabolism of the host cell. Processes range from the prevention of direct lysosomal destruction of chlamydial inclusions to the inhibition of host cell apoptosis and an enhanced cellular glucose uptake to maintain energy-consuming mechanisms. Furthermore, infection regularly causes the development of a proinflammatory and proproliferative phenotype in the host cell in vitro, ex vivo and in vivo and own new findings suggest a detrimental proliferative loop within vascular cells upon a modified endothelin-1 axis demonstrating a potential for proatherosclerotic processes in early and progressed atherosclerosis. This review displays crucial mechanisms of Chlamydia pneumoniae-induced interactions with vascular host cell signalling cascades with an emphasis on mitogenic and inflammatory processes as well as target cell activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The novel chlamydial adhesin CPn0473 mediates the lipid raft‐dependent uptake of Chlamydia pneumoniae

Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chl...

متن کامل

p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease

Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of several factors contributing to PD prognosis, the role of p38 MAPKs (mitog...

متن کامل

Chlamydia pneumoniae Infection in Atherosclerotic Lesion Development through Oxidative Stress: A Brief Overview

Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral bloo...

متن کامل

A Chlamydia pneumoniae infection model using established human lymphocyte cell lines.

Since current studies indicate possible infection of human lymphocytes with Chlamydia (Chlamydophila) pneumoniae, establishment of an in vitro C. pneumoniae infection model using lymphocyte cell lines was demonstrated. Human lymphoid cell lines (Molt 4 [T-cell] and P3HR1 [B-cell]) were utilized for this purpose besides human monocyte cell line (THP-1) and human epithelial cell line (HEp-2), as ...

متن کامل

Oxidized LDL promotes the mitogenic actions of Chlamydia pneumoniae in vascular smooth muscle cells.

AIMS The atherogenic actions of Chlamydia pneumoniae (C. pneumoniae), a common respiratory pathogen, are dependent upon a high-cholesterol environment in vivo. It is possible that oxidized low-density lipoprotein (oxLDL) is responsible for promoting the atherogenic effects of C. pneumoniae through a stimulation of cell proliferation. This study determined whether oxLDL can enhance the mitogenic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Thrombosis and haemostasis

دوره 102 6  شماره 

صفحات  -

تاریخ انتشار 2009